If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-20=0
a = 30; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·30·(-20)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*30}=\frac{0-20\sqrt{6}}{60} =-\frac{20\sqrt{6}}{60} =-\frac{\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*30}=\frac{0+20\sqrt{6}}{60} =\frac{20\sqrt{6}}{60} =\frac{\sqrt{6}}{3} $
| -7=-6n | | 7=12+x/4 | | 14x^2+448x=10752 | | -5(8+2x)=-80 | | 2-15n=5(3n+1) | | 〖9x〗^4=25x^2-16 | | -7g=17 | | 5x-(0,5x)-45=0 | | 7k-(-3)+8=0 | | 7x-4=-6x+9 | | 18=-14s | | -3(-1x+7)=-6 | | 8s=-9 | | 7-n-n=-3 | | 7x-9=9x+90 | | -2=-6f | | x+6(x-1)=7x(3+x) | | 61/8-w=53/8 | | 2=1+7t-5t^2 | | 2(s+2)^2-9(s+2)=5 | | 8-3k=6k+2 | | 2(2x+4)=-2(2x+4) | | 4m+14m–-11=-7 | | m+13/5=5 | | 9y+2+2y+5=16y-23 | | 13-3(5x-1=) | | 3(2x+1=3(x+5) | | 3/4(3x+1)=12 | | 5x+6x-4x-5=44 | | 20/30=5x | | 6(5x+7)=402 | | 3(2x-1)+5=6(x+1 |